Residual Attention Network
A Gluon implement of Residual Attention Network
This code is refered to this project
https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch
Cifar-10 Kaggle
GluonCV
Project site: https://github.com/dmlc/gluon-cv
I have contribute this project to GluonCV.Now you can easily use pre-trained model in few days.
Usage:
from gluoncv.model_zoo.residual_attentionnet import *
Include which you can use:
__all__ = ['ResidualAttentionModel', 'cifar_ResidualAttentionModel',
'residualattentionnet56', 'cifar_residualattentionnet56',
'residualattentionnet92', 'cifar_residualattentionnet92',
'residualattentionnet128', 'cifar_residualattentionnet452',
'residualattentionnet164', 'residualattentionnet200',
'residualattentionnet236', 'residualattentionnet452']
Prerequisites
Python3.6, Numpy, mxnet
- I use maxnet-cu90 –pre but if not is just ok
- If you want to train you need a recent NVIDIA GPU
Results
- cifar-10: Acc-95.41(Top-1 err 4.59) with Attention-92(higher than paper top-1 err 4.99)
- cifar-10: Acc-95.68(Top-1 err 4.32) with Attention-92(use MSRAPrelu init)
- cifar-10: Acc-97.14(Top-1 err 2.86) with Attention-92, using gluoncv-tricks.
- BS 256,
- +mixup,
- +LR warmup,
- +No bias decay.
- +Cosine decay.
- +Cutout
- cifar-10: Acc-97.57(Top-1 err 2.43) with Attention-452, using gluoncv-tricks.
- BS 128,
- +mixup,
- +LR warmup,
- +No bias decay.
- +Cosine decay.
- +Cutout
- Network scale control: I add ‘p,t,r,m’ to control network scale.(Gluon-CV)
- I add ‘p,t,r,m.’ control which origin paper proposed.Now you can use Attentnon 56/92/128/164/200/236/452 in Gluon-cv.But I won’t update to this project.Because I can’t train them and if I add, the paprm I have trained won’t use any more.
- ImageNet: Attention56 achieves (21.03 5.47) top1/top5 error on ImageNet.Better than paper.(21.76 5.9).(Gluon-cv)
How to train & test
For training cifar10, just run train_cifar.py
For only testing cifar10, you can simply run below script.
import mxnet as mx
from mxnet import gluon, image
from train_cifar import test
from model.residual_attention_network import ResidualAttentionModel_92_32input_update
def trans_test(data, label):
im = data.astype(np.float32) / 255.
auglist = image.CreateAugmenter(data_shape=(3, 32, 32),
mean=mx.nd.array([0.485, 0.456, 0.406]),
std=mx.nd.array([0.229, 0.224, 0.225]))
for aug in auglist:
im = aug(im)
im = nd.transpose(im, (2, 0, 1))
return im, label
ctx = mx.gpu()
val_data = gluon.data.DataLoader(
gluon.data.vision.CIFAR10(train=False, transform=trans_test),
batch_size=64)
net = ResidualAttentionModel_92_32input_update()
net.hybridize()
net.load_parameters('cifar_param/test_iter225999_0.95410.param')
test(net, ctx, val_data, 0)
Paper referenced
Residual Attention Network for Image Classification (CVPR-2017 Spotlight) By Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Chen Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang(https://arxiv.org/pdf/1704.06904.pdf)
Left: an example shows the interaction between features and attention masks. Right: example images illustrating that different features have different corresponding attention masks in our network. The sky mask diminishes low-level background blue color features. The balloon instance mask highlights high-level balloon bottom part features. </br>
Attention Network architecture. </br>
The Attention-56 network outperforms ResNet-152 by a large margin with a 0.4% reduction on top-1 error and a 0.26% reduction on top-5 error. More importantly Attention-56 network achieves better performance with only 52% parameters and 56% FLOPs compared with ResNet-152, which suggests that the proposed attention mechanism can significantly improve network performance while reducing the model complexity.